SLATERSVILLE PUBLIC SUPPLY

Consumer Confidence Report – 2023
Covering Calendar Year – 2022

This brochure is a snapshot of the quality of the water that we provided last year. Included are the details about where your water comes from, what it contains, and how it compares to Environmental Protection Agency (EPA) and state standards. We are committed to providing you with information because informed customers are our best allies. If you would like to learn more about our decision-making processes that affect drinking water quality, please call MAURA BECK at 401-767-2200 Ext: 305.

Our drinking water is supplied from another water system through a Consecutive Connection (CC). To find out more about our drinking water sources and additional chemical sampling results, please contact our office at the number provided below. Your water comes from:

<table>
<thead>
<tr>
<th>Source Name</th>
<th>Source Water Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>No other sources to display.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buyer Name</th>
<th>Seller Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLATERSVILLE PUBLIC SUPPLY</td>
<td>WOONSOCKET WATER DIVISION</td>
</tr>
<tr>
<td>WOONSOCKET WATER DIVISION</td>
<td>TOWN OF CUMBERLAND</td>
</tr>
<tr>
<td>TOWN OF CUMBERLAND</td>
<td>PAWTUCKET WATER SUPPLY BOARD VEOLIA-NA</td>
</tr>
</tbody>
</table>

The RI Department of Health, in cooperation with other state and federal agencies, has assessed the threats to Slattersville Public Supply’s water supply sources. The assessment considered the intensity of development, the presence of businesses and facilities that use, store, or generate potential contaminants, how easily contaminants may move through the soils in the Source Waters Protection Area (SWPA), and the sampling history of the water.

Our monitoring program continues to assure you that the water delivered to your home is safe to drink. However, the assessment found that the water source is at a moderate risk of contamination. This means the water could one day become contaminated. Monitoring and protection efforts are necessary to assure continued water quality. The complete Source Water Assessment Report is available from Woonsocket Water or the Department of Health at 401-222-6867 or the following link:
https://health.ri.gov/publications/assessments/WoonsocketWaterDept.pdf

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as those with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) included rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in sources water before we treat it include:
- **Microbial contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, livestock operations and wildlife.
- **Inorganic contaminants**, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- **Pesticides and herbicides**, which may come from a variety of sources such as storm water run-off, agriculture, and residential users.
- **Radioactive contaminants**, which can be naturally occurring or the result of mining activity.

Organic contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and also come from gas stations, urban storm water run-off, and septic systems.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Our water system is required to test a minimum of 4 samples per month in accordance with the Total Coliform Rule for microbiological contaminants. Coliform bacteria are usually harmless, but their presence in water can be an indication of disease-causing bacteria. When coliform bacteria are found, special follow-up tests are done to determine if harmful bacteria are present in the water supply. If this limit is exceeded, the water supplier must notify the public.

Water Quality Data

The following tables list all of the drinking water contaminants which were detected during the 2022 calendar year. The presence of these contaminants does not necessarily indicate the water poses a health risk. Unless noted, the data presented in this table is from the testing done January 1 - December 31, 2022. The state requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old. Our water system makes every effort to provide you with safe drinking water.

Terms & Abbreviations

Maximum Contaminant Level Goal (MCLG): the “Goal” is the level of a contaminant in drinking water below which there is no known or expected risk to human health. MCLGs allow for a margin of safety.

Maximum Contaminant Level (MCL): the “Maximum Allowed” MCL is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Secondary Maximum Contaminant Level (SMCL): recommended level for a contaminant that is not regulated and has no MCL.

Action Level (AL): the concentration of a contaminant that, if exceeded, triggers treatment or other requirements.

Treatment Technique (TT): a required process intended to reduce levels of a contaminant in drinking water.

Maximum Residual Disinfectant Level (MRDL): the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG): the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Non-Detects (ND): lab analysis indicates that the contaminant is not present.

Parts per Million (ppm) or milligrams per liter (mg/l)
Parts per Billion (ppb) or micrograms per liter (μg/l)
Picocuries per Liter (pCi/L): a measure of the radioactivity in water.
Millirems per Year (mrem/yr): a measure of radiation absorbed by the body.

Monitoring Period Average (MPA): An average of sample results obtained during a defined time frame, common examples of monitoring periods are monthly, quarterly and yearly.

Nephelometric Turbidity Unit (NTU): a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person. Turbidity is not regulated for groundwater systems.

Running Annual Average (RAA): an average of sample results obtained over the most current 12 months and used to determine compliance with MCLs.

Locational Running Annual Average (LRAA): Average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters.

Testing Results for: SLATERSVILLE PUBLIC SUPPLY

<table>
<thead>
<tr>
<th>Microbiological</th>
<th>Result</th>
<th>MCL</th>
<th>MCLG</th>
<th>Typical Source</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulated Contaminants</td>
<td>No Detected Results were Found in the Calendar Year of 2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disinfection Byproducts</th>
<th>Sample Point</th>
<th>Monitoring Period</th>
<th>Highest LRAA</th>
<th>Range (low/high)</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Typical Source</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL HALOACETIC ACIDS (HAAS)</td>
<td>Distribution System</td>
<td>2022</td>
<td>22</td>
<td>18 - 22</td>
<td>ppb</td>
<td>60</td>
<td>0</td>
<td>Byproduct of drinking water disinfection</td>
<td>No</td>
</tr>
<tr>
<td>TTHM</td>
<td>Distribution System</td>
<td>2022</td>
<td>66</td>
<td>31 - 66</td>
<td>ppb</td>
<td>80</td>
<td>0</td>
<td>Byproduct of drinking water disinfection</td>
<td>No</td>
</tr>
</tbody>
</table>

Lead and Copper
<table>
<thead>
<tr>
<th>Monitoring Period</th>
<th>90th Percentile</th>
<th>Range (low/high)</th>
<th>Unit</th>
<th>AL</th>
<th>Sites Over AL</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPPER, FREE LEAD</td>
<td>2016 - 2020</td>
<td>0.123</td>
<td>0 - 0.419</td>
<td>ppm</td>
<td>1.3</td>
<td>0</td>
</tr>
<tr>
<td>2016 - 2020</td>
<td>2.5</td>
<td>0 - 64.1</td>
<td>ppb</td>
<td>15</td>
<td>1</td>
<td>Corrosion of household plumbing systems</td>
</tr>
</tbody>
</table>

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water system is responsible for providing high-quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Maximum Disinfection Level

<table>
<thead>
<tr>
<th>MPA</th>
<th>MPA Units</th>
<th>RAA</th>
<th>RAA Units</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022 - 2022</td>
<td>0.0400</td>
<td>MG/L</td>
<td>0.3</td>
<td>MG/L</td>
</tr>
</tbody>
</table>

During the 2022 calendar year, we had the below noted violation(s) of drinking water regulations.

Federal Compliance Period
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Violations Occurred in the Calendar Year of 2022</td>
<td></td>
</tr>
</tbody>
</table>

Additional Required Health Effects Language:

Infants and children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home’s plumbing. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (800-426-4791).

There are no additional required health effects violation notices.

Some or all of our drinking water is supplied from another water system. The table below lists all of the drinking water contaminants, which were detected during the 2022 calendar year from the water systems that we purchase drinking water from.
<table>
<thead>
<tr>
<th>Regulated Contaminants</th>
<th>Collection Date</th>
<th>Water System</th>
<th>Highest Value</th>
<th>Range (low:high)</th>
<th>Unit</th>
<th>MCL</th>
<th>MCL G</th>
<th>Typical Source</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARIUM</td>
<td>3/17/2022</td>
<td>PAWTUCKET WATER SUPPLY BOARD VEOLIANA</td>
<td>0.036</td>
<td>0.036</td>
<td>ppm</td>
<td>2</td>
<td>2</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
<td>No</td>
</tr>
<tr>
<td>BARIUM</td>
<td>3/30/2022</td>
<td>TOWN OF CUMBERLAND</td>
<td>0.13</td>
<td>0.096 - 0.13</td>
<td>ppm</td>
<td>2</td>
<td>2</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
<td>No</td>
</tr>
<tr>
<td>BARIUM</td>
<td>5/2/2022</td>
<td>WOONSOCKET WATER DIVISION</td>
<td>0.034</td>
<td>0.011 - 0.034</td>
<td>ppm</td>
<td>2</td>
<td>2</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
<td>No</td>
</tr>
<tr>
<td>CYANIDE</td>
<td>5/2/2022</td>
<td>TOWN OF CUMBERLAND</td>
<td>76</td>
<td>19 - 76</td>
<td>ppb</td>
<td>200</td>
<td>200</td>
<td>Discharge from steel/metal factories; Discharge from plastic and fertilizer factories</td>
<td>No</td>
</tr>
<tr>
<td>CYANIDE</td>
<td>5/2/2022</td>
<td>WOONSOCKET WATER DIVISION</td>
<td>65</td>
<td>0 - 65</td>
<td>ppb</td>
<td>200</td>
<td>200</td>
<td>Discharge from steel/metal factories; Discharge from plastic and fertilizer factories</td>
<td>No</td>
</tr>
<tr>
<td>DICHLORO METHANE</td>
<td>6/23/2022</td>
<td>PAWTUCKET WATER SUPPLY BOARD VEOLIANA</td>
<td>9.6</td>
<td>0.9 - 9.6</td>
<td>ppb</td>
<td>5</td>
<td>0</td>
<td>Discharge from pharmaceutical and chemical factories</td>
<td>No</td>
</tr>
<tr>
<td>NITRATE</td>
<td>3/17/2022</td>
<td>PAWTUCKET WATER SUPPLY BOARD VEOLIANA</td>
<td>0.76</td>
<td>0.76</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
<td>No</td>
</tr>
<tr>
<td>NITRATE-NITRITE</td>
<td>6/23/2022</td>
<td>PAWTUCKET WATER SUPPLY BOARD VEOLIANA</td>
<td>3.01</td>
<td>0 - 3.01</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
<td>No</td>
</tr>
<tr>
<td>NITRATE-NITRITE</td>
<td>5/2/2022</td>
<td>TOWN OF CUMBERLAND</td>
<td>3.7</td>
<td>0.82 - 3.7</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
<td>No</td>
</tr>
<tr>
<td>PER FLUOROCTANE SULFONIC ACID (PFOS)</td>
<td>4/18/2019</td>
<td>PAWTUCKET WATER SUPPLY BOARD VEOLIANA</td>
<td>12.5</td>
<td>0 - 12.5</td>
<td>ppt</td>
<td>20*</td>
<td>* See PFAS info below</td>
<td>Surface or emulsifier; used in fire-fighting foam, circuit board etching acids, alkaline cleaners, floor polish, and as a pesticide active ingredient for insect bait traps; U.S. manufacturer of PFOS phased out in 2002; however, PFOS still generated incidentally</td>
<td>No</td>
</tr>
<tr>
<td>PER FLUOROCETANE SULFONIC ACID (PFOS)</td>
<td>4/24/2019</td>
<td>TOWN OF CUMBERLAND</td>
<td>6.83</td>
<td>0 - 6.83</td>
<td>ppt</td>
<td>20*</td>
<td>Surfactant or emulsifier; used in fire-fighting foam, circuit board etching acids, alkaline cleaners, floor polish, and as a pesticide active ingredient for insect bait traps; U.S. manufacture of PFOS phased out in 2002, however, PFOS still generated incidentally</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>PER FLUOROCETANE SULFONIC ACID (PFOS)</td>
<td>6/4/2019</td>
<td>WOONSOCKET WATER DIVISION</td>
<td>6.83</td>
<td>0 - 6.83</td>
<td>ppt</td>
<td>20*</td>
<td>Surfactant or emulsifier; used in fire-fighting foam, circuit board etching acids, alkaline cleaners, floor polish, and as a pesticide active ingredient for insect bait traps; U.S. manufacture of PFOS phased out in 2002, however, PFOS still generated incidentally</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>PER FLUOROCETANOIC ACID (PFOA)</td>
<td>4/24/2019</td>
<td>TOWN OF CUMBERLAND</td>
<td>41.5</td>
<td>0 - 41.5</td>
<td>ppt</td>
<td>20*</td>
<td>Perfluorinated aliphatic carboxylic acid; used for its emulsifier and surfactant properties in or as fluoropolymers, fire-fighting foams, cleaners, cosmetics, greases and lubricants, paints, polishes, adhesives and photographic films.</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>PER FLUOROCETANOIC ACID (PFOA)</td>
<td>6/4/2019</td>
<td>WOONSOCKET WATER DIVISION</td>
<td>4.65</td>
<td>0 - 4.65</td>
<td>ppt</td>
<td>20*</td>
<td>Perfluorinated aliphatic carboxylic acid; used for its emulsifier and surfactant properties in or as fluoropolymers, fire-fighting foams, cleaners, cosmetics, greases and lubricants, paints, polishes, adhesives and photographic films.</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>PER FLUOROHEPTANOIC ACID (PFHFA)</td>
<td>4/18/2019</td>
<td>PAWTUCKET WATER SUPPLY BOARD VEOLIANA</td>
<td>4.78</td>
<td>0 - 4.78</td>
<td>ppt</td>
<td>20*</td>
<td>Manmade chemical; used in products to make them stain, grease, heat and water resistant</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Please Note: Because of sampling schedules, results may be older than 1 year.

*PFAS refers to Per- and Polyfluorinated Substances. During calendar years 2017 and 2019, many public water systems in Rhode Island collected samples for PFAS as part of a statewide investigation into the occurrence of PFAS in drinking water. In June of 2022, Rhode Island passed a state law regulating PFAS in drinking water. The data above show PFAS detected for the past 5 years. Prior to June 2022, there were no State or federal Maximum Contaminant Levels for PFAS. During the sampling years of 2017 and 2019, there was an established lifetime health advisory levels for PFOS (perfluorooctane sulfonate) and PFOA (perfluorooctanoic acid) of 70 parts per trillion. A health advisory considers the level of a contaminant in drinking water below which adverse health effects are not expected to occur. Health advisories are not regulations and they are not Maximum Contaminant Levels. In June 2022, EPA changed the 70ppt health advisory for PFOA and PFOS to 0.004 ppt. This was updated based on new data, including human health studies in populations exposed to these chemicals. Currently, there is still no final federal Maximum Contaminant Level for PFAS. In the above table, the Maximum Contaminant Level for PFAS is listed as 20ppt. This is only a state law at this time. Since the law to regulate PFAS was passed in 2022, public water systems have been working diligently to be in compliance. For compliance with the newly enacted state PFAS law, public water systems must sample on or before July 1, 2023 and comply with the INTERIM MAXIMUM CONTAMINANT LEVEL of 20ppt for 6 PFAS compounds on or before July 1, 2023. The data shown above that was collected prior to 2022 was collected at a time when there was no state Maximum Contaminant Level or updated health advisory.

During the 2022 calendar year, the water systems that we purchase water from had the below noted violation(s) of drinking water regulations.

<table>
<thead>
<tr>
<th>Water System</th>
<th>Type</th>
<th>Category</th>
<th>Analyte</th>
<th>Compliance Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Violations Occurred in the Calendar Year of 2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Required Health Effects Notices:

Infants and children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home’s plumbing. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (800-426-4791).

Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Fecal coliforms and E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Microbes in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a special health risk for infants, young children, some of the elderly, and people with severely compromised immune systems.